
protein when coexpressed with EmrE(Nout) (Fig.
2B). This appeared to be a result of the charge and
not the length of the C-terminal tail, because the
addition of up to six Gly had little effect on the
dual topology of EmrE (fig. S2).

Finally, to examine whether a C-terminal pos-
itively charged residue could influence the global
topology when moved even farther from the N
terminus, we extended EmrE by adding a fifth
TMH, composed only of alanines and leucines, to
the C terminus. Given its composition, this TMH
was not expected to interact in any specific way
with TMHs 1 to 4. EmrE-TMH5 had an Nin to-
pology, as it was inactive when expressed alone
but imparted EtBr resistance—albeit at a lower
level than wild-type EmrE—when coexpressed
with EmrE(Nout) (Fig. 3). However, adding a
C-terminal Lys to EmrE-TMH5 resulted in a
protein [EmrE-TM5(K)] that imparted EtBr re-
sistance only when coexpressed with EmrE(Nin).
Thus, the C-terminal Lys can reverse the orien-
tation of as many as five upstream TMHs. Finally,
theNin topologywas regainedwhen theC-terminal
Lys was complemented with an N-terminal Lys
[EmrE(K3)-TMH5(K)].

In summary, the membrane orientation of
the 4-TMH, dual-topology protein EmrE and a
5-TMH version of the same protein could be
shifted both to Nin and to Nout by adding a single
positively charged residue in various locations
throughout the protein. In all cases, the shift in
orientation was as predicted by the positive-inside
rule. A C-terminal Arg or Lys was as effective in
this regard as were positively charged residues
placed in other locations closer to the N terminus.
Apparently, the protein remains “topologically
uncommitted” until the last residue has been syn-
thesized. These and other observations of a re-
lated kind (17) raise important questions regarding
themechanism ofmembrane protein insertion and
assembly. Specifically, how much protein can the
translocon pore accommodate? Are translocon-
associated proteins, such as YidC (18), involved

in chaperoning membrane proteins to their final
topology? Is postinsertion conversion between
different topologies, so far seen only under condi-
tions of extreme alterations in membrane lipid
composition (17), possible also in wild-type cells?
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A Generalization of Hamilton’s
Rule for the Evolution of
Microbial Cooperation
jeff smith,*† J. David Van Dyken, Peter C. Zee

Hamilton’s rule states that cooperation will evolve if the fitness cost to actors is less than the
benefit to recipients multiplied by their genetic relatedness. This rule makes many simplifying
assumptions, however, and does not accurately describe social evolution in organisms such as
microbes where selection is both strong and nonadditive. We derived a generalization of
Hamilton’s rule and measured its parameters in Myxococcus xanthus bacteria. Nonadditivity
made cooperative sporulation remarkably resistant to exploitation by cheater strains. Selection
was driven by higher-order moments of population structure, not relatedness. These results
provide an empirically testable cooperation principle applicable to both microbes and
multicellular organisms and show how nonlinear interactions among cells insulate bacteria
against cheaters.

Social evolution has illuminated many dif-
ferent areas of biology, from altruistic be-
havior in insects to sex ratios, selfish

genetic elements, and multicellularity (1, 2). The
central puzzle in this field is how cooperation—

increasing the fitness of other individuals—
persists when cheaters can benefit without pay-
ing the cost of cooperating. The most prominent
explanation for the evolution of cooperation is
kin selection, in which benefits preferentially

Fig. 3. Topological ef-
fects of adding Lys residues
to the N- and C-termini of
the EmrE-TMH5 construct
(Glu14 is retained in these
constructs). TMH5 (green
in the miniature cartoons)
is aGGPG…GPGG-flanked
19-residue-long segment
composed of four Leu and
15Ala. Normalized growth
values during coexpression
with EmrE(Nin) (blue bars)
and EmrE(Nout) (red bars)
are shown. Error bars indi-
cate T1 SEM.
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go to individuals who share cooperation alleles
(3, 4). The centerpiece of kin selection theory is
Hamilton’s rule (3, 5, 6). It states that cooper-
ation will evolve if rb – c > 0, where b is the
benefit of cooperation; c is the cost of cooper-
ation; and r is the genetic relatedness of actors
to recipients (Fig. 1A). Kin selection relatedness
is a statistical regression coefficient describing
the similarity of actors and recipients at relevant
cooperation loci and is not necessarily equal to
whole-genome similarity (5–7).

Hamilton’s rule is an elegant evolutionary
principle, but it encounters problems when selec-
tion is strong and fitness effects are nonadditive
(5, 8). Nonadditivity occurs whenever fitness is
a nonlinear function of social environment (Fig.
1B) or when different genotypes have different
slopes (Fig. 1C). Under these circumstances, b
and c are functions of r (9). This confounds fit-
ness effects with population structure, obscures
the biological causes of selection, and limits the
usefulness of Hamilton’s rule as an interpretive
tool (fig. S1). It also makes it difficult to test kin
selection with Hamilton’s rule, because costs
and benefits cannot be extrapolated to other
population structures. Social evolution needs
theory that makes testable predictions for
specific systems (10, 11).

These problems are especially pronounced
for cooperation among microbes. Microbial traits
as diverse as quorum sensing, biofilms, develop-
ment, metabolism, mutualism, and virulence are
social and vulnerable to cheating (11–18). Many

systems show strong frequency-dependent selec-
tion, one form of nonadditivity (12, 14, 16–18).
So far, social evolution theory has mostly been
a qualitative, heuristic guide to interpretation.
Models are seldom compared with data, and at-
tempts to measure Hamilton’s rule are rare [but
see (19, 20)]. Even though microbes have been
singled out as important tests of social evolution
theory (11), it is still unclear how much related-
ness is required to prevent cheaters from spread-
ing, whether relatedness in natural populations is
sufficient, and whether kin selection acts differ-
ently in microbes and in animals.

To bridge the gap between theory and data,
we derived a generalization of Hamilton’s rule
that does not assume additivity or weak selec-
tion and whose parameters are empirically mea-
surable (21). We found that cooperators increase
in frequency if

r • b – c + m • d > 0

Distributions can be described by their mo-
ments: parameters that measure their shape and

location. The relatedness vector r = {r1, r2, ...}
measures how the distributions of social envi-
ronments encountered by cooperators and non-
cooperators differ in each of these moments
(fig. S2). r1 is equivalent to r in Hamilton’s rule
(5). The other terms are higher-order related-
ness coefficients (22, 23). Any smooth func-
tion can be expanded into a Taylor polynomial
series whose coefficients measure its linear,
quadratic, and higher-order components. The
benefit vector b describes noncooperator fit-
ness as a function of social environment (red
lines in Fig. 1) in terms of its Taylor coefficients.
c is the cost of cooperation when all neighbors
are noncooperators. m • d is nonzero when bene-
fits depend on recipient genotype (Fig. 1C). m
is the moments vector for cooperators. d is the
difference between the Taylor series of coop-
erators and noncooperators. Unlike Hamil-
ton’s rule, Eq. (1) disentangles fitness effects
from population structure and is valid for ar-
bitrarily complex forms of social selection. When
fitness effects are additive, Eq. (1) reduces to
rb – c > 0.

Fig. 1. Measuring the costs and benefits
of cooperation in microbes. Blue, coop-
erator fitness; red, noncooperator fitness.
(A) In Hamilton’s rule, b is the slope of
fitness against the frequency of cooper-
ators among social neighbors; c is the
fitness difference between cooperators
and noncooperators for a given social
environment. Fitness effects are non-
additive when benefits are (B) nonlinear
or (C) depend on recipient genotype.
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Fig. 2. Parameters of the generalized Hamilton’s
rule measured in an experimental population of
sporulating Myxococcus bacteria. (A) Absolute
fitness of a cooperator strain (blue circles) and a
cheater strain (red diamonds) as a function of
their frequency within groups. Data points are
independent experimental replicates; lines, regres-
sion model fit to data. (B) Fitness terms in Eq. (1),
calculated from the data shown in (A). Green
diamonds, benefit vector b; purple circles, genotype-
dependence vector d. Points show best-fit model
(TSD from bootstrapped data). (C) Initial distribu-
tion of cooperators among groups for a specific
experimental population. (D) Social structure
terms in Eq. (1) were calculated for the population
shown in (C). Blue, cooperator moments m; red,
noncooperator moments mnon; black, relatedness
vector r.
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We applied our generalized rule to data from
experimental populations of Myxococcus xan-
thus bacteria. When starved of amino acids,
M. xanthus cells aggregate and form fruiting
bodies in which a small fraction of cells become
stress-resistant spores; the rest die (24). Some
cheater strains sporulate superefficiently among
cooperators but do poorly on their own (14). We
mixed a cooperator strain and a cheater strain at
different frequencies, let them develop, and mea-
sured their abundance among surviving spores.
Fitness effects were strongly nonadditive (Fig.
2A). Cooperators increased the fitness of both
genotypes [F(1,43) = 1872.92, P < 0.0001; n =
48], but the effect was strongly nonlinear [slight-
ly less than exponential; F(1,43) = 15.69, P <
0.001]. Cheaters benefited more than coopera-
tors [F(1,43) = 81.87, P < 0.0001]. Cooperators
were more fit than cheaters at low frequencies
[F(1,43) = 51.54, P < 0.0001] but less fit at high
frequencies. Cooperating was therefore altruistic
when locally common but mutually beneficial
when rare (25).

We calculated b and d in Eq. (1) from the
Taylor series of the fitted statistical model and
found that their linear, additive components
were very small (Fig. 2B). The largest terms were
order 10 to 15. This is caused by the steepness
of the curves in Fig. 2A and means that fitness
was disproportionately determined by groups
with high frequencies of cooperators. The geno-
type of individual neighbors mattered less than
the genotype of several neighbors collectively.
Under such circumstances, the most important
components of population structure are the cor-
responding higher-order moments—not first-
order relatedness. c was –1.73 T 0.02 (SEM) ×
10−6. A negative cost indicated that cooperation
provided a direct fitness benefit when most neigh-

bors were noncooperators. This was a minor
component of fitness, however. Large negative
values of d indicated that cheaters mainly gain
advantage by benefiting from cooperative groups
more than cooperators do.

We calculated r and m for an experimental
population where most groups contained both
genotypes, but with a strong skew toward one
or the other (Fig. 2C). The components of these
vectors varied less than those of b and d (Fig.
2D). Kin selection relatedness was r1 ≈ 0.8. Put-
ting it all together, the predicted inclusive fit-
ness effect of cooperation was r • b – c + m •
d = 0.014 spores per cell [95% confidence
interval (CI) 0.004 to 0.021], which did not
significantly differ from the observed value of
0.0135. A positive inclusive fitness effect indi-
cated that, in this population, kin selection fa-
vored cooperation.

To better understand kin selection in this
system, we calculated the inclusive fitness effect
for populations with different global coopera-
tor frequencies and rates of migration between
groups. We found that cooperative development
in M. xanthus is markedly resilient to cheating.
In the conventional island model of population
structure (26), cheaters could invade populations
of cooperators only if migration was high
enough that r1 < 0.6 (Fig. 3A). Considering
the large fitness advantage cheaters often had
within groups, this is a remarkably low related-
ness threshold. Reexamining Fig. 3A gives an
intuitive explanation for this result. Compared
with cooperators in all-cooperator groups, cheaters
had a net advantage only in groups with >70%
cooperators. Population structure limits the abun-
dance of groups in this narrow range of frequen-
cies (fig. S2). The specific form nonadditivity
takes is crucial. Increasing returns from cooper-

ation limit the ability of cheaters to invade, where-
as decreasing returns make it easier (fig. S3).
When population structure was very low, di-
rect fitness benefits allowed cooperators to es-
cape being displaced by cheaters. Instead, both
genotypes coexisted in a balanced polymorphism
(Fig. 3A). Population structure reduced the
equilibrium frequency of cheaters and their effect
on population mean fitness (“cheater load”)
(Fig. 3B). Selection was frequency dependent
because the higher-order components of popula-
tion structure that dominate selection were also
frequency dependent (fig. S4). Hamilton’s rule,
however, misleadingly placed the cause of fre-
quency dependence in its fitness terms b and
c instead of its population structure term r
(fig. S4).

Our generalization of Hamilton’s rule pro-
vides a kin selection principle that is valid for
systems with strong nonadditive fitness effects.
It shows why higher-order moments of pop-
ulation structure appear in models of social
evolution (23, 27), shows when they are im-
portant, and provides a general method for
handling them. Because Eq. (1) refers only to
fitness and genotype frequencies, it is indepen-
dent of many system-specific details and can be
applied to cooperation at all levels of biological
organization—not just microbes. It also lets
social evolution theory be more than a heuristic
guide to interpretation. Because all the terms in
Eq. (1) are empirically measurable, it is both a
quantitative analytical tool and a testable hy-
pothesis. The inclusive fitness effect (r • b – c +
m • d) is a quantitative measure of selection that
one can use to compare different hypothetical
mechanisms for the evolution of cooperation.
One could, for example, evaluate the relative
importance of population structure and infec-
tious transfer of cooperation genes (28) by
comparing the amount of allele frequency
change due to kin selection or gene transfer.
The inclusive fitness effect also shows when
“Trojan horse” strategies for controlling mi-
crobial infections with human-introduced cheaters
(29) are likely to be successful.

Strong nonadditivity plays an important role
in microbial cooperation. It causes these systems
to deviate from the traditional scheme where
social interactions are classified as altruistic,
mutually beneficial, selfish, or spiteful (24, 25).
Frequency-dependent selection within groups
can create situations where cooperation is al-
truistic at some frequencies but mutually bene-
ficial at others (Fig. 2A). With nonadditivity, the
r in Hamilton’s rule can also be a relatively un-
important component of population structure. In
our M. xanthus system, selection is primarily
determined by higher-order terms that measure
the abundance of groups with high frequencies
of cooperators. Finally, strong population struc-
ture is not always needed to prevent the spread
of strong cheaters. The cheater strain we exam-
ined has a hundred-fold fitness advantage within
groups when it is rare, and it massively reduces

Fig. 3. M. xanthus development is resili-
ent to cheating. (A) Conditions under which
kin selection favors cooperation. Blue sig-
nifies conditions in which cooperators have
higher mean fitness than cheaters; red,
cheaters have higher mean fitness. In an is-
land model of population structure, cheaters
invade only when migration between groups
is large enough that first-order relatedness is
<0.6. When cheaters can invade, they reach
an equilibrium frequency where cooperators
remain at least 40% of the population. We
report population structure in terms of first-
order relatedness instead of migration rate
to aid comparison with other systems. (B)
Cheater load. Points show population mean
fitness near the selective equilibrium for a
given level of population structure.
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group fitness when it is common. Nevertheless,
increasing-returns nonadditivity allows coopera-
tion to evolve at levels of population structure
comparable to that seen among social insect
colonies (30). Cheaters have a rare advantage in
several systems (12, 16–18) and may be a com-
mon property of microbial cooperation.
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c-di-AMP Secreted by Intracellular
Listeria monocytogenes Activates a
Host Type I Interferon Response
Joshua J. Woodward,1 Anthony T. Iavarone,2 Daniel A. Portnoy1,3*

Intracellular bacterial pathogens, such as Listeria monocytogenes, are detected in the cytosol of
host immune cells. Induction of this host response is often dependent on microbial secretion
systems and, in L. monocytogenes, is dependent on multidrug efflux pumps (MDRs). Using
L. monocytogenes mutants that overexpressed MDRs, we identified cyclic diadenosine
monophosphate (c-di-AMP) as a secreted molecule able to trigger the cytosolic host response.
Overexpression of the di-adenylate cyclase, dacA (lmo2120), resulted in elevated levels of the host
response during infection. c-di-AMP thus represents a putative bacterial secondary signaling
molecule that triggers a cytosolic pathway of innate immunity and is predicted to be present in a
wide variety of bacteria and archea.

The mammalian innate immune system is
composed of receptors that collectively
serve as a pathogen sensor to monitor the

extracellular, vacuolar, and cytosolic cellular com-
partments (1). Recognition of microbes within
these distinct compartments leads to cellular re-
sponses that are commensurate with the microbial
threat. Although both pathogenic and non-
pathogenic microbes interact with extracellular
and vacuolar compartments, infectious disease

agents often mediate their pathogenesis by di-
rectly entering the cytosol or through delivery
of virulence factors into the host cell cytosolic
compartment. Thus, the innate immune system
may distinguish between pathogenic and non-
pathogenic microbes by monitoring the cytosol
(2, 3).

Several distinct pathways of innate immunity
are present in the host cell cytosol. One, termed
the cytosolic surveillance pathway (CSP), detects
bacterial, viral, and protozoan pathogens, leading
to the activation of interferon regulatory factor 3
(IRF3) and nuclear factor kappa–light-chain-
enhancer of activated B cells (NF-kB), resulting
in the induction of interferon-b (IFN-b) and co-
regulated genes (4). Some ligands that activate
this pathway are known, for example, viral and
bacterial nucleic acids (5). However, the ligands

and host receptors that lead to IFN-b production
after exposure to nonviral microbes—including
L. monocytogenes, M. tuberculosis, F. tularensis,
L. pneumophila, B. abortis, and T. cruzi—remain
unknown (4–9).

Expression of L. monocytogenes multidrug
efflux pumps (MDRs) of the major facilitator
superfamily controls the capacity of cytosolic
bacteria to induce host expression of IFN-b (10).
Ectopic expression of multiple MDRs enhances
IFN-b production, while one, MdrM, controls
the majority of the response to wild-type bac-
teria (10). Given that MDRs transport small
molecules (<1000 daltons), we hypothesized
that L. monocytogenes secretes a bioactive small
molecule that is recognized within the host cell
cytosol. To identify the bioactive ligand(s)
secreted by L. monocytogenes MDRs, we per-
formed solid phase extraction (SPE) of the cul-
ture supernatant from an MdrM overexpressing
L. monocytogenes strain (marR-, DP-L5445) that
exhibits an IFN-b hyperactivating phenotype
(11). Delivery of the fraction to the macrophage
cytosol using reversible digitonin permeabiliza-
tion (12) resulted in a dose-dependent increase in
type-I IFN (Fig. 1A). Addition of this fraction in
the absence of digitonin resulted in no IFN
production, consistent with cytosolic detection of
the active ligand.

In L. monocytogenes strains that exhibit var-
iable levels of MDR expression, IFN-b produc-
tion correlates with increases in transporter levels
(10). Supernatants from four L. monocytogenes
strains—mdrM-, WT, marR-, and tetR::Tn917,
each with increasing levels of MDR expression—
were tested for activity. Comparable to infection
assays, MDR expression correlated with IFN-
inducing activity of the culture supernatants
(Fig. 1B). The tetR::Tn917 strain exhibited high-
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Supporting Online Material: Materials and Methods 

Derivation of the generalized Hamilton's rule. Our analysis is a neighbor-modulated 

formulation of kin selection, which partitions fitness into the effect of an individual's own 

genotype and the effect of social neighbors (S1, S2). We consider the situation in which there are 

two genotypes: a cooperator and a noncooperator. The social neighborhoods of these genotypes 

contain varying frequencies of cooperators. Social selection changes the abundance of the two 

strains, but mutation, recombination, and horizontal gene transfer are assumed rare enough to not 

significantly affect genotype frequencies.  

Let the absolute fitness of a genotype be w = n'/n, where n and n' are the total number of 

individuals of that genotype before and after selection. Let the g be the genotypic value of 

individuals such that cooperators have g = 1 and noncooperators g = 0. Let G be an individual's 

social environment—the frequency of cooperators among other members of the social group. 

Because we are interested in social evolution, the fitness of individuals is affected by both their 

own genotype and that of their neighbors: w = w(g,G). Any smooth fitness function can be 

expanded in a Taylor series around (g = 0, G = 0) as 

 

! 

w = bjG
j

j= 0

"

# + dkgG
k

k= 0

"

# .   

We let baseline fitness be b0 = a and the cost of cooperation when all neighbors are 

noncooperators be d0 = –c. The covariance between fitness and genotype Cov(w, g) (S1) is then  

 

! 

Cov(a,g) + b j Cov(G
j
,g)

j=1

"

# $ cCov(g,g) + dkCov(gG
k
,g)

k=1

"

# .   

Because a is a constant, Cov(a, g) = 0. Cov(g, g) = Var(g). Dividing by Var(g),  

 

! 

Cov(w,g)

Var(g)
= "wg = b j"G j

g

j=1

#

$ % c + dk"(gGk
)g

k=1

#

$ .   

We let rj = 

! 

"
G

j
g
 = E(Gj

coop) – E(Gj
non) = mj

coop – mj
non, where mj

(i) is the jth moment of the 

distribution of G around G = 0 for genotype i. The regression definition of kin selection 

relatedness r = !Gg (S1) is equivalent to the first-order term r1. Higher order terms rj = 

! 

"
G

j
g
 can 



 

be thought of as higher-order relatednesses. We can write the vector of moments as mi = {m1
(i), 

m2
(i), ... } and the vector of relatednesses as r = {r1, r2, ... } = mcoop – mnon. If we let b = {b1, b2, ... 

} then ! bj

! 

"
G

j
g
 = r • b. Similarly, we can write 

! 

"
(gG

k
)g

=  E(gcoop G
k
coop) – E(gnon G

k
non) = 1 · 

E(Gk
coop) – 0 · E(Gk

non) = mk
(coop). If we let d = {d1, d2, ... } and mcoop = m then ! dk

! 

"
(gG

k
)g

 = m • d.  

Selection favors cooperation when !wg > 0. That is, when  

 r • b – c + m • d > 0.  (S1)  

In the special case where all fitness effects are completely additive (Fig.  1A), w = a + b1G – cg. 

Then b = {b1, 0, 0, ... } and d = {0, 0, ... }. Substituting into equation (S1) recovers the standard 

expression for Hamilton's rule: r1b1 – c > 0. Mean fitness is 

! 

w  = 

! 

g  E(wcoop) + (1 – 

! 

g ) E(wnon) = 

! 

g [a – c + m • (b + d)] + (1 – 

! 

g )[a + b • mnon] = a + mnon • b + 

! 

g !wg.  

Bacterial strains. Myxococcus xanthus strains were obtained from G. J. Velicer (Indiana 

University). GJV1 is a descendant of the standard laboratory strain DK1622 (S3). GJV10 (S4) is 

a derivative of GJV1 with an integrated pDW79 plasmid that confers resistance to kanamycin. In 

this paper we refer to GJV10 as the cooperator strain. GJV206.3 is a laboratory-evolved cheater 

strain that is resistant to rifampicin (S5). Strains were stored at –80 C in 20% (v/v) glycerol.  

Sporulation assay. Cells were grown in 8 ml CTT growth media (S3) at 32 ºC while 

shaking at 300 rpm. Log-phase cells were centrifuged 15 min at 4500 !g and resuspended in 

TPM starvation media to a density of 5 ! 109 cells/ml. Resuspended cells were mixed at 

cooperator frequencies of 0%, 1%, 10%, 50%, 90%, 99%, or 100% of total cells. 100 µl (5 ! 108 

cells/ml) of each cell suspension was plated onto 1.5% TPM agar. Cells developed for 5 days at 

32 ºC and 90% rh. Fruiting bodies were harvested with a sterile scalpel into 1 ml dH20, heated 2 

hr at 50 ºC to kill any remaining vegetative cells, and then sonicated to disperse spores. Spores 

were serially diluted in dH2O and plated in 0.5% CTT agar. Densities of GJV10 spores were 

measured from colony counts on plates containing 40 µg/ml kanamycin (Sigma, St. Louis). 

Densities of GVB206.3 spores were measured from colony counts on plates containing 5 µg/ml 

rifampicin (Sigma, St. Louis). Replicate experimental blocks were conducted on separate days 

with cells grown independently from the same frozen stock. For each strain, absolute fitness 

during development is equivalent to sporulation efficiency: the number of cells surviving as 



 

spores divided by the number of cells plated. The inclusive fitness effect was calculated as mean 

cooperator fitness minus mean cheater fitness.  

Statistics and calculations. All statistics and calculations were performed using R 2.8.1 (R 

Development Core Team, Vienna, Austria, http://www.R-project.org) unless otherwise indicated. 

The equation for developmental fitness was determined by ANCOVA (lm procedure) on log10-

transformed fitness data. The best-fit statistical model included significant terms for intercept, 

slope (G), genotype effect on intercept (g), slope by genotype interaction (g ! G), and a quadratic 

term (G2). w(g, G) was obtained by transforming the fitted regression equation to a linear fitness 

scale.  

Values of a, b, c, and d were determined from the coefficients of the Taylor series of w(g, 

G) up to order 30, obtained using the Series command in Mathematica 7.0 (Wolfram 

Research, Champaign, IL). We emphasize that we did not fit a 30-order polynomial to our data; 

we simply represented its five-parameter statistical model in terms of its Taylor series. The 

different components of b and d are not independent of each other. m, mnon, and r were 

calculated from the moments of the experimental distribution. If G is the initial frequency of 

cooperators among developing cells within a group, then moment k of genotype i was calculated 

as E(Gk), where the expectation is taken over all cells of genotype i. The inclusive fitness effect 

!wg was calculated as in equation (S1). Error estimates were determined by bootstrap. 

Coefficients of the full statistical model were determined for 1000 instances of resampled data. 

For each of these equations, a, b, c, d, and !wg were calculated as described above.  

Lacking empirical data on the distribution of genotypes among naturally occuring M. 

xanthus fruiting bodies, we assumed for convention’s sake an island model of population 

structure (S6) in which genotypes follow a beta distribution among groups (Fig. S2, for 

example). Beta distributions of within-group cooperator frequency were implemented using the 

dbeta command in R with parameters " = 2Nm

! 

g  and ! = 2Nm(1–

! 

g ), where 

! 

g  is the global 

cooperator frequency and 2Nm is a distribution parameter. These were then normalized to obtain 

the distribution of G for each genotype separately: G dbeta(G)/

! 

g  for cooperators and (1–G) 

dbeta(G)/(1–

! 

g ) for noncooperators. Moments mk
(i) were calculated by numerically integrating 

Gk over the probability distribution of genotype i. We varied the migration parameter 2Nm but 



 

report population structure in terms of first-order relatedness for ease of comparison. For each 

combination of parameters we calculated the inclusive fitness effect and mean fitness as 

described above.  

To determine the fit of Hamilton’s rule to nonadditive data, we simulated island models of 

population structure with 500 groups of 100 individuals using the rbeta command in R and 

other parameters as described above. Each individual was assigned a fitness based on its own 

genotype and that of its neighbors using the fitness functions described in the text. Hamilton’s 

rule was then fit to these distributions as a partial regression with fitness structure w = a – cg + 

bG using the lm command.  



Supplementary Figure 1. Limitations of Hamilton’s rule with strong nonadditivity. Solid 
lines in the top panels show an example nonadditive fitness function. Dashed lines 

show the fitness function estimated by Hamilton’s rule given the distribution shown in 

the bottom panel. Blue: cooperators. Red: noncooperators. Hamilton’s rule is effectively 

a linear regression fit to nonlinear data. This limits the amount of variation it can explain 

and in some cases leads to biologically nonsensical results like negative mean fitness at 

some cooperator frequencies [dashed blue line in (B)]. Hamilton’s rule also confounds 

fitness effects with population structure: it identifies different b and c values for (A) and 
(B) even though they have identical fitness functions. 
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Supplementary Figure 2. Kin selection relatedness in asexual microbes. (A) Hypotheti­
cal distributions of cooperative genotypes among the social neighbors of cooperators 

(solid blue line) and noncooperators (solid red line). Dashed lines show distribution 

means. (B) The r in Hamilton’s rule is r
1
: the difference between the means of the distri­

butions. (C) Higher order relatednesses are the differences between the higher­order 

moments of the distributions. Shown is fifth­order relatedness r
5
. 
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Supplementary Figure 3. The functional form of nonadditive benefits determines the 
range of social groups in which cheaters gain a net fitness advantage over cooperators. 

Red line: cheater fitness. Blue line: cooperator fitness. Shaded area: cheaters have 

greater fitness than cooperators in all­cooperator social groups. (A) Decreasing returns 

from cooperation. (B) Linear returns. (C) Increasing returns. Larger shaded areas 

require more population structure to prevent invasion of cheaters. 



Supplementary Figure 4. Identifying the causes of frequency­dependent social selec­
tion. (A, B) In the island model of population structure, kin selection relatedness (r

1
) is 

independent of global cooperator frequency, but r (black) and m (blue) are not. Because 
selection in the Myxoccoccus example is dominated by terms of order 10­15, it is these 
components of population structure that create frequency­dependent selection. (C, D) 

Hamilton’s rule misleadingly places the cause of frequency­dependent selection in its 

fitness terms (b and c) instead of its population structure term (r). Solid lines show the 
Myxococcus fitness function estimated in Fig. 2A, now plotted on a linear scale. Dashed 
lines show the fitness function estimated by Hamilton’s rule for the population structures 

in the panels above. The small difference in r between (C) and (D) iscaused by random­
ness in the simulated population structures. 
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